
The Journal of Infectious Diseases                                

M A J O R  A R T I C L E

vided the original work is not altered or transformed in any way, and that the work is properly 

Safety and Immunogenicity of Ad26-Vectored HIV Vaccine 
With Mosaic Immunogens and a Novel Mosaic Envelope 
Protein in HIV-Uninfected Adults: A Phase 1/2a Study
Daniel J. Stieh,1,a Dan H. Barouch,2,3,a Christy Comeaux,1 Michal Sarnecki,4 Kathryn E. Stephenson,2 Stephen R. Walsh,5,6 Sheetal Sawant,7

Jack Heptinstall,7 Georgia D. Tomaras,7 James G. Kublin,8 M. Juliana McElrath,8 Kristen W. Cohen,8 Stephen C. De Rosa,8 Galit Alter,3, Guido Ferrari,7

David Montefiori,7 Philipp Mann,8 Steven Nijs,9 Katleen Callewaert,9 Paul A. Goepfert,10 Srilatha Edupuganti,11 Etienne Karita,12 Michael S. Seaman,2

Lawrence Corey,8 Lindsey R. Baden,6 Maria G. Pau,1 Hanneke Schuitemaker,1 and Frank Tomaka,13 on behalf of the ASCENT/HVTN118/HPX2003 Study Team
1Janssen Vaccines and Prevention Leiden, the Netherlands; 2Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA; 3Ragon Institute of MGH, MIT, and 
Harvard, Cambridge, Massachusetts, USA; 4Janssen Vaccines, Bern, Switzerland; 5Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA; 
6Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA; 7Department of Surgery, Center for Human Systems Immunology, and Duke Human Vaccine Institute, Duke 
University, Durham, North Carolina, USA; 8Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA; 9Janssen Research and Development, Beerse, 
Belgium; 10Division of Infectious Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA; 11Division of Infectious Diseases, Department of Medicine, 
Emory University School of Medicine, Atlanta, Georgia, USA; 12Rwanda Zambia HIV Research Group, Kigali, Rwanda; and 13Janssen Research and Development, Titusville, New Jersey, USA

Background. Developing a cross-clade, globally effective HIV vaccine remains crucial for eliminating HIV.
Methods. This placebo-controlled, double-blind, phase 1/2a study enrolled healthy HIV-uninfected adults at low risk for HIV 

infection. They were randomized (1:4:1) to receive 4 doses of an adenovirus 26-based HIV-1 vaccine encoding 2 mosaic Gag and 
Pol, and 2 mosaic Env proteins plus adjuvanted clade C gp140 (referred to here as clade C regimen), bivalent protein regimen (clade 
C regimen plus mosaic gp140), or placebo. Primary end points were safety and antibody responses.

Results. In total 152/155 participants (clade C, n = 26; bivalent protein, n = 103; placebo, n = 26) received ≥1 injection. The 
highest adverse event (AE) severity was grade 3 (local pain/tenderness, 12%, 2%, and 0% of the respective groups; solicited 
systemic AEs, 19%, 15%, 0%). HIV-1 mosaic gp140-binding antibody titers were 79 595 ELISA units (EU)/mL and 137 520 EU/mL 
in the clade C and bivalent protein groups (P < .001) after dose 4 and 16 862 EU/mL and 25 162 EU/mL 6 months later. Antibody 
response breadth against clade C gp140 and clade C/non-clade C gp120 was highest in the bivalent protein group.

Conclusions. Adding mosaic gp140 to the clade C regimen increased and broadened the elicited immune response without 
compromising safety or clade C responses.

Clinical Trials Registration. NCT02935686.
Keywords. Ad26 HIV vaccine; broad immunogenicity; cross-clade; heterologous regimen; mosaic HIV antigen; tetravalent.

Received 05 July 2022; editorial decision 04 November 2022; accepted 07 November 2022; 
published online 9 November 2022

aD. J. S. and D. H. B. contributed equally.
Presented in part: 10th International AIDS Society Conference on HIV Science, 21–24 July 

2019, Mexico City, Mexico.
Correspondence: Daniel J. Stieh, PhD, Janssen Vaccines and Prevention, Archimedesweg 6, 

Leiden 2333, the Netherlands (dstieh@ITS.JNJ.com).

The Journal of Infectious Diseases® 2023;227:939–50 
© The Author(s) 2022. Published by Oxford University Press on behalf of Infectious Diseases 
Society of America. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution- 
NonCommercial-NoDerivs licence (https://creativecommons.org/licenses/by-nc-nd/4.0/), 
which permits non-commercial reproduction and distribution of the work, in any medium, pro

cited. For commercial re-use, please contact journals.permissions@oup.com
https://doi.org/10.1093/infdis/jiac445

With 38 million people living with human immunodeficien
cy virus (HIV) worldwide, a safe, globally effective vaccine 
remains essential to curb further HIV transmission [1]. To 
date, 4 preventive HIV vaccine concepts have been tested 
in efficacy studies, only 1 of which demonstrated vaccine ef
ficacy (31% in the RV144 trial) [2, 3]. The vaccines’ 

immunogens’ inability to elicit a sufficiently broad and 
durable immune response to counter the extensive diversity 
of HIV-1 is likely one of the main reasons for their poor 
efficacy [4].

A multivalent HIV vaccine based on the replication- 
incompetent recombinant adenovirus serotype 26 (Ad26) vec
tor was developed using a mosaic immunogen approach to 
elicit broader responses against diverse variants of HIV-1 
[5–7]. The in silico-designed mosaic antigens include a maxi
mum number of potential epitopes from group M variants of 
HIV-1 envelope (Env), group-specific antigen (Gag), and po
lymerase (Pol) proteins [8]. These Ad26-delivered HIV-1 mo
saic antigens elicited broad cellular immune responses and 
partially protected against neutralization-resistant simian- 
human immunodeficiency virus SHIVSF162P3 in rhesus mon
keys [6, 9]. Furthermore, the addition of adjuvanted recombi
nant glycoprotein (gp)140 to the Ad26-based mosaic vaccine 
substantially improved protection in rhesus monkeys [10]. 
Env-specific binding antibodies were repeatedly identified as 
a correlate of protection for these mosaic vaccines [7, 10, 11]. 
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Specifically, Env-directed antibodies targeting diverse se
quences within the first and second hypervariable regions 
(V1V2) of gp120 correlated inversely with the HIV-1 infec
tion risk in the RV144 efficacy study, with V1V2 antibodies 
potentially contributing to protection [12–14]. Moreover, in 
the HVTN 702 phase 2b/3 efficacy trial, high levels of 
V1V2-binding antibody responses along with CD4+ T-cell re
sponses correlated with decreased HIV-1 acquisition [15]. 
These findings highlight the potential of Ad26-delivered 
HIV-1 mosaic antigens combined with recombinant gp140 
as vaccine immunogens.

A vaccine regimen consisting of Ad26-delivered HIV-1 
mosaic antigens (2 mosaic gag-pol genes and 1 mosaic env 
gene) and high-dose clade C gp140 induced a robust and 
comparable immune response in both humans and rhesus 
monkeys, and protected the monkeys against repetitive, in
trarectal, heterologous challenges with SHIVSF162P3 [7]. 
Adding a fourth Ad26 vector encoding a second, comple
mentary, mosaic env gene induced a significantly greater 
and broader immune response against diverse HIV-1 
strains [16]; this regimen was evaluated in the phase 2b 
Imbokodo efficacy study (ClinicalTrials.gov identifier, 
NCT03060629), wherein the primary analysis demonstrated 
that vaccine efficacy, assessed in women at risk for HIV ac
quisition, was not significantly different from 0% [17]. The 
goal of this first-in-human study was to determine whether 
adding a second gp140, based on mosaic (Mos) env encoded 
by Ad26, to the previously evaluated clade C gp140, given 
with the Ad26-based tetravalent HIV vaccine [16] 
(Figure 1A), would increase the breadth of humoral im
mune responses against diverse HIV clades without com
promising safety or clade C responses.

METHODS

Vaccines

Three candidate HIV-1 vaccine products manufactured in 
PER.C6 cells were evaluated: Ad26.Mos4.HIV, clade C gp140, 
and Mos1 gp140. The Ad26.Mos4.HIV vaccine product is a re
combinant, tetravalent, replication-incompetent, Ad26-based 
vaccine encoding 2 mosaic HIV-1 Gag and Pol and 2 mosaic 
Env proteins [6, 16, 18] in a 1:1:1:1 virus particle ratio admin
istered at doses of 5 × 1010 virus particles in 0.5 mL. Clade C 
gp140 contains trimeric, recombinant clade C HIV-1 Env 
gp140 (C97ZA012.012; GenBank: AF286227.1) administered 
at doses of 250 µg glycoprotein and 425 µg aluminum phos
phate adjuvant in 0.5 mL. The bivalent gp140 vaccine contains 
clade C gp140 mixed 1:1 with trimeric, recombinant HIV-1 Env 
gp140 engineered to contain Env motifs of multiple HIV-1 
clades [19] administered at doses of 250 µg glycoprotein (ie, 
125 µg clade C gp140 plus 125 µg Mos1 gp140) and 425 µg alu
minum phosphate in 0.5 mL.

Study Design

This randomized, double-blind, placebo-controlled, phase 1/2a 
study (ClinicalTrials.gov identifier, NCT02935686) was con
ducted at 13 sites in the United States, Kenya, and Rwanda. 
Healthy HIV-uninfected adults aged 18 to 50 years who were 
at low risk for HIV-1 infection and gave informed consent 
were enrolled (additional eligibility criteria are listed in the 
Supplementary Methods). The study regimen consisted of 
Ad26.Mos4.HIV or placebo administered intramuscularly at 
day 0 and week 12; at weeks 24 and 48, Ad26.Mos4.HIV was 
coadministered (1 injection in each arm) with either clade C 
gp140 (further referred to as the clade C regimen in this article), 
clade C gp140 and Mos1 gp140 (referred to here as the bivalent 
protein regimen), or placebo. Participants were randomized 
(1:4:1) to receive either the clade C, bivalent protein, or placebo 
regimen, respectively (Figure 1B). For reference, the clade C 
regimen uses the same vaccine components as were evaluated 
in the phase 2b Imbokodo efficacy study [17].

The study was conducted in accordance with the Declaration 
of Helsinki, Good Clinical Practices, and applicable regulatory 
guidelines. The study protocol was approved by institutional 
review boards at each study site. Participants or their legally ac
ceptable representatives provided written informed consent to 
participate at the time of screening.

Immunogenicity Assays

Sera and peripheral blood mononuclear cells (PBMCs) to be 
analyzed for humoral and cellular immune responses, respec
tively, were obtained from blood samples collected on day 0 
(baseline) and at weeks 28 (4 weeks after third vaccination), 
52 (4 weeks after fourth vaccination), and 72 (6 months after 
fourth vaccination; Figure 1B). Fine-needle aspirates of local 
draining lymph nodes after the third vaccination were evaluat
ed for germinal center B-cell responses of 8 participants.

Vaccine-induced binding antibody responses were analyzed 
using 5 HIV-1 Env clade-specific enzyme-linked immunosor
bent assays (ELISAs) against gp140 antigens. Vaccine-induced 
binding immunoglobulin (Ig) G1 and IgG3 subclass responses 
were investigated using clade C (C97ZA.012)-specific ELISAs. 
The functionality of vaccine-induced antibodies was evaluated 
in a virus neutralization assay (VNA) using TZM-bl cells and 
Env-pseudotyped viruses. The HIV-1 binding antibody multi
plex assay was used to determine the magnitude and breadth 
of antibody isotype (IgG and IgA) and subclass (IgG3) respons
es to a broad panel of HIV-1 Env using a global antigen panel 
against gp120, gp140, gp41, and V1V2-gp70 scaffolds 
(Supplementary Table 1) [20].

Enzyme-linked immunosorbent spot (ELISPOT) assays were 
used to analyze T-cell responses to stimulation with pools of 
HIV-1 immunogens. Intracellular cytokine staining was used 
to detect interferon-γ (IFN-γ) and/or interleukin 2 
(IL-2)-producing CD4+ and CD8+ T cells in response to 
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HIV-1 mosaic immunogens. Immune responses against Ad26 
were evaluated using an adeno-VNA. These assays are further 
described in the Supplementary Methods.

End Points

The primary end points were (1) the safety and tolerability 
of the vaccine regimens (ie, solicited local and systemic ad
verse events [AEs] over 7 days after each vaccination; AEs 
over 28 days after each vaccination; discontinuations due 
to AEs; and serious AEs and AEs of special interest, ie, 
HIV infection, during the course of the study); and (2) the 
titers and breadth of HIV-1 Env binding antibody responses 

to the 2 vaccine regimens. Secondary end points included ti
ters and breadth of Env-specific neutralizing antibodies for 
tier 1 HIV viruses; Env-specific antibody functionality; ti
ters and breadth of Env-specific binding antibody isotypes; 
and T-cell responses. T-cell responses were characterized in 
terms of IFN-γ response, CD4+ and CD8+ T-cell functional
ity, and T-cell memory differentiation. Exploratory end 
points included B-cell responses, lymph node immune re
sponses, and immune responses to the Ad26 viral vector. 
Presented here are results of the final analysis, performed 
once all participants remaining on study completed their fi
nal main study visit.

Ad26.Mos2S.Env 

Ad26.Mos4.HIV

Soluble gp140 + aluminum phosphate adjuvant

Ad26.Mos1.Gag-Pol

Ad26.Mos2.Gag-Pol

Ad26.Mos1.Env 

Clade C gp140  (250 μg) Clade C gp140 (125 μg)

Mosaic1 gp140  (125 μg)

1st 2nd 3rd 4th

Week 0 12 24 48

OR
+

Clade C

Bivalent

Placebo

Regimen/study group

Clade C Bivalent

(1.25 × 1010 vp 
per Ad26)

Immune samplinga

A

B

Figure 1. Vaccine composition, regimens, and immunization schedules. A, Composition of the vaccine regimen components used in the study: Ad26.Mos4.HIV, clade 
C gp140, and Mos1 gp140. B, Participants were administered Ad26.Mos4.HIV or placebo at day 0 and week 12, followed by Ad26.Mos4.HIV in combination with either 
clade C gp140 (clade C regimen) or clade C gp140 and Mos1 gp140 (bivalent protein regimen) at weeks 24 and 48. aSera and peripheral blood mononuclear cells were 
collected for analysis of humoral and cellular immune responses at day 0 and at weeks 28 (4 weeks after third vaccination), 52 (4 weeks after fourth vaccination), and 
72 (6 months after fourth vaccination). Abbreviations: gp, glycoprotein; HIV, human immunodeficiency virus; Mos, mosaic; vp, viral particle.
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Statistical Analysis

The sample size was deemed sufficient by the relevant authorities 
to assess the safety and immunogenicity of the 2 vaccine regimens. 
The full analysis set (FAS; safety analyses) included all participants 
who received ≥ 1 study injection. The per protocol immunogenic
ity set (immunogenicity analyses) included participants who re
ceived at least the first 3 injections within the protocol-specified 
time window (± 2 weeks), did not contract HIV during the study, 
and had ≥ 1 blood sample analyzed. For pooled analysis, the clade 
C group immunogenicity data were enriched with data from par
ticipants in our previous study [16] to allow statistical analysis. No 
statistical hypothesis was tested in the immunogenicity analysis, 
but differences in the magnitudes of immune responses between 
the vaccinated groups were explored either by a 2-sample t test 
on the log10 data, if those were normally distributed, or by a 
Wilcoxon rank sum test, using SAS 9.4 (Supplementary Methods).

RESULTS

Participant Disposition

Between 31 March 2017 and 21 March 2019, 281 volunteers were 
screened and 155 were randomized to the clade C (n = 26), 
bivalent protein (n = 103), or placebo (n = 26) groups 
(Supplementary Figure 1). Three participants in the bivalent pro
tein group were not vaccinated; thus, 152 participants received 
≥1 injection and were included in the FAS. Of these, 70% were 
recruited in the United States, 26% in Rwanda, and 3% in 
Kenya. The median age was 30 years (range, 18–50 years) and 
59% were women (Table 1). Demographics were generally ba
lanced between study groups.

Eighty-six percent of participants received all 4 vaccinations 
(Supplementary Figure 1); 14% discontinued prematurely, due 

to AEs (1%), pregnancy (1%), loss to follow-up (3%), withdraw
al (5%), or other reasons (3%) (Supplementary Table 2). The 2 
AEs that led to discontinuation (one grade 2 muscular weak
ness [clade C group]; one grade 1 celiac disease [bivalent pro
tein group]) were deemed not related to study injection. The 
2 pregnant participants did not experience any medical disor
ders during pregnancy. One pregnancy resulted in a healthy 
full-term infant, while the other was electively aborted at 8 
weeks of gestation.

Safety and Tolerability

Most AEs were grade 1 or 2; grade 3 was the highest severity 
reported for any AE (Table 2). The rates and severity of solic
ited local AEs were comparable between the clade C and biva
lent protein groups and did not increase with subsequent 
vaccinations (Supplementary Figure 2). Solicited local AEs 
were reported by 92% (12% grade 3) and 94% (2% grade 3) 

Table 1. Demographic and Baseline Characteristics in the Full Analysis 
Set

Characteristic
Clade C  
(n = 26)

Bivalent  
(n = 100)

Placebo  
(n = 26)

Age, y, mean (range) 28.7 (19–43) 31.8 (19–50) 30.7 (18–50)

Body mass index, kg/m², 
mean (range)

26.0 (17.3–39.0) 24.9 (15.9–44.4) 23.7 (17.2–38.0)

Sex

Female 16 (62) 59 (59) 15 (58)

Male 10 (39) 41 (41) 11 (42)

Race

White 12 (46) 47 (47) 12 (46)

Black 10 (39) 38 (38) 9 (35)

Asian 2 (8) 7 (7) 2 (8)

Other 2 (8) 8 (8) 3 (12)

Country

United States 18 (69) 70 (70) 19 (73)

Rwanda 7 (27) 26 (26) 7 (27)

Kenya 1 (4) 4 (4) 0

Data are No. (%) except where indicated.

Table 2. Summary of Solicited and Unsolicited AEs Within 28 Days of 
Any Injection and Other AEs of Interest in the Full Analysis Set

Adverse Events
Clade C  
(n = 26)

Bivalent  
(n = 100)

Placebo  
(n = 26)

Any solicited AEs 25 (96) 96 (96) 22 (85)

Solicited local AEs 24 (92) 94 (94) 17 (65)

Grade 3 pain/tenderness 3 (12) 2 (2) 0

Solicited systemic AEs 22 (85) 90 (90) 19 (73)

Grade 3 solicited systemic AEs 5 (19) 15 (15) 0

Fatigue 19 (73) 78 (78) 18 (69)

Headache 15 (58) 69 (69) 16 (62)

Myalgia 15 (58) 68 (68) 9 (35)

Any unsolicited AEs 13 (50) 79 (79) 21 (81)

Grade 3 0 1 (1)a 0

Grade 4 0 0 0

Unsolicited AEs related to study injection 0 9 (9) 1 (4)

Grade 3 or 4 0 0 0

Gastrointestinal disorders, vomiting 0 4 (4) 0

Nervous system disorders, postural dizziness 0 2 (2) 0

Respiratory, thoracic, and mediastinal 
disorders

0 2 (2) 0

Eczema 0 0 1 (4)

AEs leading to discontinuation of study vaccine 1 (4) 1 (1) 0

Related to vaccine 0 0 0

Celiac disease 0 1 (1) 0

Muscular weakness for 7 days 1 (4) 0 0

Grade 3 laboratory abnormalities 0 1 (1)b 0

Grade 3 vital sign abnormalities 1 (4) 2 (2) 1 (4)

Bradycardia 1 (4) 0 1 (4)

Tachycardia 0 2 (2) 0

Considered as AEs 0 0 0

Serious AEs 0 0 0

HIV infection during the study 0 0 0

Death 0 0 0

Data are No. (%).  

Abbreviations: AE, adverse event; HIV, human immunodeficiency virus.  
aBlood creatinine increased.  
bAbsolute neutrophil count decreased.
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in the respective groups, and all were pain/tenderness (Table 2
and Supplementary Figure 2). Solicited systemic AEs were re
ported by 92% (19% grade 3) and 94% (15% grade 3) in the re
spective vaccine groups and by 65% in the placebo group; 
fatigue, headache, and myalgia were the most common 
(Table 2). There were no reported cases of grade 3 or 4 pyrexia. 
The frequency of solicited systemic AEs was highest after the 
first injection, then decreased after subsequent vaccinations 
(Supplementary Figure 2).

Unsolicited AEs related to vaccination (all grade 1 or 2) oc
curred in no participants in the clade C group, 9% in the biva
lent protein group (mostly vomiting), and 4% in the placebo 
group (Table 2). No deaths, serious AEs, or HIV infections 
occurred.

HIV-1 Env-Specific Antibody Responses

All vaccinees developed IgG responses against HIV-1 Env gp140 
after the third and fourth vaccinations (Figure 2A and 2B). Peak 
antibody titers to Mos1 gp140 in the bivalent protein group (137 
520 ELISA units [EU]/mL) were significantly higher than in the 
clade C group (79 595 EU/mL; P < .001). These titers waned 6 
months after the fourth vaccination but remained higher than 
at baseline in all vaccinees in both the clade C (16 862 EU/ 
mL) and bivalent protein groups (25 162 EU/mL; Figure 2A). 
The binding antibody responses against clade C gp140 were 
similar between the vaccine groups (Figure 2B). These data sug
gest that the Mos1 gp140 component caused no immunologic 
interference in the antibody response against clade C.

The binding antibody multiplex assay was used to measure 
the breadth and durability of the binding antibody response 
against cross-clade panels of gp120, gp140, and V1V2 antigens. 
The bivalent protein regimen consistently resulted in greater 
breadth, magnitude, and durability of binding antibody re
sponses than the clade C regimen against gp120 and gp140 
clade C, gp120 and gp140 non-clade C, and an extended 
gp120 panel of clade C antigens after the third and fourth vac
cinations, and 6 months after fourth vaccination (Figure 3 and 
Supplementary Figure 3). Responses against V1V2 had lower 
magnitude, breadth, and durability compared to other antigens 
in both vaccine groups. After the third vaccination, cross-clade 
breadth of humoral immunity was improved in the bivalent 
protein versus the clade C group (area under magnitude- 
breadth curve ratios [AUCR] of bivalent protein to clade C reg
imen for gp140, 1.22, P = .069; gp120, 1.20, P = .035; and V1V2, 
1.32, P = .031). The antibody binding breadth increased further 
after the fourth vaccination (AUCR gp140, 1.17, P = .036; 
gp120, 1.21, P = .012; and V1V2, 1.55, P = .001) and was consis
tent 6 months postvaccination (AUCR gp140, 1.24, P = .091; 
gp120, 1.40, P = .004; and V1V2, 1.47, P < .001), most clearly 
against the V1V2 antigens. B-cell responses evaluated in 3 par
ticipants after the third vaccination showed vaccine-induced 
Env-specific B cells (Supplementary Figure 4).

Neutralizing antibody responses against HIV-1 clade C and B 
viruses were limited to tier 1A virus strains clade C MW965.26 
(100% responders in both groups) and clade B SF162.LS (at 
week 28, 90% in the clade C and 97.8% in the bivalent protein 
groups responded), whereas no autologous or heterologous 
tier 2 neutralization was detected (Supplementary Table 3).

HIV-1–Specific Cellular Immune Responses

Comparable cellular immune responses against HIV-1 Env 
were detected in the clade C (median 452 spot-forming cells 
[SFCs]/106 PBMCs) and bivalent protein (median 444 SFCs/ 
106 PBMCs) groups after the third vaccination and maintained 
after the fourth vaccination and 6 months later (Figure 4A). 
The cellular immune response against Gag and Pol proteins 
showed no difference in the magnitude and kinetics between 
vaccinated groups (Figure 4A). T-cell responses were generally 
higher against the Env and Pol immunogens than against Gag 
antigens (Figure 4A).

Intracellular cytokine staining against vaccine-matched 
HIV-1 Env gp120 peptide pools showed that both regimens in
duced both CD4+ and CD8+ T-cell responses (Figure 4B and 4C
and Supplementary Figure 5). The magnitude and response 
rate of CD4+ T-cell responses were consistent throughout the 
study in both groups; those in the bivalent protein group 
were significantly higher than those in the clade C group after 
the third vaccination (0.123% vs 0.065% CD4+ T cells, 81% vs 
50% responders, P < .001) and 6 months after the fourth vacci
nation (0.087% vs 0.035% CD4+ T cells, 69% vs 29% respond
ers, P < .001; Figure 4B). The participants having the strongest 
CD4+ T-cell responses to Env were also those with the greatest 
magnitude of binding antibodies to Mos1 gp140 
(Supplementary Figure 6), demonstrating the role of strong 
T-cell help facilitating greater humoral immune response de
velopment. The magnitude and rate of CD8+ T-cell responses 
against Env protein were generally lower than those of CD4+ 

T-cell responses in both vaccinated groups (Figure 4C and 
Supplementary Figure 5B).

The magnitude and rate of CD8+ T-cell responses to Gag 
(0.014% vs 0.016% CD8+ T cells, 23% vs 35% responders after 
the fourth vaccination, P > .05) and Pol protein (0.082% vs 
0.131% CD8+ T cells, 49% vs 59% responders after the fourth 
vaccination, P > .05) were higher than those of CD4+ T-cell re
sponses for both regimens (Supplementary Figure 7).

Within these vaccine-specific T-cell populations, large num
bers of central and effector memory CD4+ T cells were detected 
in both groups (Supplementary Figure 8A), indicating the in
duction of long-lived and durable T-cell responses [21, 22]. 
The CD8+ T-cell response rate against Env gp120 peptide pools 
was generally low, but CD8+ effector memory T cells were de
tected in both groups (Supplementary Figure 8B).

Overall, these data indicate that, in general, the vaccines in
duce cellular immune responses consistently across the 
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vaccinated populations at rates similar to the peak observed af
ter the third or fourth vaccination, through 6 months after the 
fourth vaccination.

A forest plot to visualize the binding antibody and T-cell re
sponses induced (Supplementary Figure 9) showed that anti
body responses against clade B and clade C (consensus 
sequence) and the T-cell response against Env after the fourth 

vaccination were higher in the bivalent protein group than in 
the clade C group. Other responses were generally comparable 
between vaccinated groups.

To understand the role of preexisting and vaccine-induced 
vector immunity in the response to vaccination, Ad26 neutral
ization titers were evaluated over the course of the vaccination 
series. Preexisting, naturally induced neutralizing antibodies to 
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Ad26 were detected in most participants from East Africa 
(89%) compared to 5% of those from the United States 
(Figure 5A). Ad26-neutralizing antibody titers increased after 
the first vaccination but were not substantially boosted upon 

subsequent vaccinations (Figure 5B). Among the predominant
ly Ad26-seronegative participants from the United States, a low 
negative correlation (r = –0.345, P < .05) between Ad26 VNA 
and ELISA responses at the second vaccination, and a low 
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positive correlation (r = 0.344, P < .05) after the third vaccina
tion were observed (Figure 5C). However, no significant corre
lations between prevaccination Ad26 titers and postvaccination 
responses were detected among participants from East Africa 
(Figure 5D). No difference in the magnitude of ELISA respons
es was seen between the United States and East Africa after 
completion of the vaccination schedule (Supplementary 
Figure 10). Hence, Ad26 vector-specific immunity prior to vac
cination had little, if any, influence on the magnitude of in
duced immune response.

DISCUSSION

This first-in-human study evaluated the safety and immunoge
nicity of adding the Mos1 gp140 component to the previously 
tested Ad26.Mos4.HIV and clade C gp140 vaccine regimen 
[16]. Adding the in silico designed Mos1 gp140 improved 
both the magnitude and breadth of humoral immune responses 
without increasing reactogenicity. Both regimens were general
ly safe and well tolerated, consistent with the results of earlier 
studies on Ad26-based mosaic HIV vaccines [7, 11, 16]. 
Solicited and unsolicited AEs were mostly mild and compara
ble between the 2 groups, with the rates of solicited systemic 
AEs decreasing after the first injection. No HIV infections, se
rious AEs, or deaths occurred.

Both regimens elicited humoral and cellular anti–HIV-1 im
mune responses in 100% and up to 94% of recipients, respec
tively. The immunogenicity profiles observed in both groups 
are generally consistent with earlier studies [7, 11, 16]. 
Binding antibody titers to Mos1 gp140 increased after each vac
cination, peaking after the fourth vaccination in both groups. 
Neutralizing antibody responses were only raised against tier 
1 HIV strains, in line with previous findings [7, 11, 16]. This 
vaccination schedule demonstrated that the immune response 
specificities elicited by the first 2 Ad26.Mos4.HIV injections 
can develop into broad humoral and cellular immunity, and 
their specificities can be differentially boosted depending on 
the composition of the subsequent gp140 vaccines. The bivalent 
gp140 regimen induced a humoral response of greater magni
tude and breadth than the clade C gp140 regimen, and was not 
associated with any diminution in clade C-specific responses, 
thus ruling out antigenic competition, an important concern 
in multivalent HIV vaccine development [23]. The improved 
performance of the bivalent regimen in eliciting a greater mag
nitude and breadth of V1V2 responses is a potentially impor
tant difference, as these responses have been consistently 
associated with reduced risk of HIV-1 infection and increased 
vaccine efficacy across trials [14, 15]. These humoral immune 
response data, taken together, show that adding the Mos1 
gp140 component improved vaccine-induced humoral im
mune responses.
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Induction of long-lived immunological memory was indicat
ed by persistence of vaccine-elicited CD4+ and CD8+ T-cell re
sponses 6 months after the final injection at similar magnitude 
as the peak, combined with balanced effector and central mem
ory CD4+ T-cell phenotype and persistent, and broad antibody 

responses. The durability of immune responses elicited by both 
vaccine regimens was consistent with the favorable durability 
profiles reported for Janssen’s Ad26-based severe acute respira
tory syndrome coronavirus 2 (SARS-CoV-2) [24] and Zika vac
cines [25].
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All participants generated Ad26-neutralizing antibodies irre
spective of their baseline serostatus. The magnitude of 
vaccine-induced HIV-specific humoral responses was compa
rable between populations that were predominantly 
Ad26-seropositive (Kenya and Rwanda) and -seronegative 
(United States) and was not impacted by preexisting 
Ad26-specific immunity. These results may be of relevance 
for situations where Ad26-based vaccines will be more widely 
used [26]. Very rare cases of vaccine-induced thrombotic 
thrombocytopenia (VITT) have been reported among recipi
ents of Ad26-based SARS-CoV-2 vaccines [27], but no cases 
of VITT were reported in either this study or this HIV vaccine 
development program, nor with any other Ad26-vectored vac
cines developed by Janssen, aside from the SARS-CoV-2 vac
cine. Given the few participants with evaluable fine-needle 
aspirate results, no inferences regarding differences in B-cell re
sponses between the vaccine regimens can be drawn.

In conclusion, adding a mosaic gp140 Env component to the 
regimen containing Ad26.Mos4.HIV and clade C gp140 [16] in
creases the humoral and CD4+ T-cell immune responses while 
maintaining the vaccine’s safety and tolerability profile. The biva
lent protein vaccine consistently induced the greatest breadth of 
antibody responses against multiclade Env panels, including (al
though to a lesser extent) against V1V2 clade C antigens. In the 
HVTN 702 study, high levels of V1V2-directed binding antibody 
responses were associated with decreased HIV-1 acquisition [15], 
even though overall, vaccine efficacy was not demonstrated [28]. 
The phase 2b Imbokodo study (HVTN 705) evaluating efficacy of 
the Ad26.Mos4.HIV and the clade C gp140 regimen in women in 
Southern Africa started during execution of the ASCENT trial, 
but the primary analysis subsequently demonstrated that vaccine 
efficacy did not differ significantly from 0% [17]. Nevertheless, 
based on these results from ASCENT, the efficacy of the 
Ad26.Mos4.HIV and bivalent gp140 vaccine regimen is being 
evaluated in men who have sex with men and transgender indi
viduals in the Mosaico study (NCT03964415) in Western 
Europe and the Americas, where clade B is most prevalent. 
These complementary studies will demonstrate how the different 
immunologic responses induced by these vaccine regimens will 
impact vaccine efficacy in populations that are geographically dis
tinct, and in which route of HIV transmission differs.

Supplementary Data

Supplementary materials are available at The Journal of 
Infectious Diseases online. Consisting of data provided by the 
authors to benefit the reader, the posted materials are not copy
edited and are the sole responsibility of the authors, so questions 
or comments should be addressed to the corresponding author.
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